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We study the properties of plasma oscillations in the solar tachocline using shallow-water mag-
netohydrodynamic equations. These oscillations are expected to correlate with solar activity. We
find new qualitative features in the equatorial spectrum of magnetohydrodynamic oscillations as-
sociated with magneto-Rossby and magneto-Yanai waves. By studying this spectrum in terms of
band theory, we find that magneto-Kelvin and magneto-Yanai waves are topologically protected.
This highlights the important role of these two classes of waves, as robust features of the plasma
oscillation spectrum, in the interpretation of helioseismological observations.
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I. INTRODUCTION

In recent decades, helioseismology has revealed the in-
ternal rotation profile of the Sun. The inner radiative
zone is rigidly rotating, while the outer convective zone
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has a non-trivial differential profile [1, 2]. Between the
two zones is a thin layer - the solar tachocline - which
marks the transition from rigid to differential rotation
[3, 4]. This layer is composed of a radiative part and an
overshoot part deep in the convective zone at a distance
of about 70% of the solar radius and with a thickness of
less than 5% of the solar radius (see Fig. 1) [5]. Current
observations suggest that the tachocline does not change
significantly in thickness or position with time [6], while
hosting strong toroidal magnetic fields [7]. The dynamics
of the solar tachocline is a subject of intense study (see
[8] for a review).

Figure 1: Schematic picture of the Sun depicting the
tachocline lying in between the radiative interior and

the convective zone. Also displayed are three
background variables which are used to describe the
tachocline as a shallow water problem. These are the
angular velocity Ω0 of the radiative interior, the height
of the tachocline layer h0 and the magnitude B0 of the

non-uniform toroidal magnetic field.

The influence of the tachocline on solar activity is not
yet fully understood, but it has been argued that it may
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play a significant role in a variety of phenomena, in-
cluding solar cycles [8]. Indeed, it has been suggested
that the long wavelength oscillations of the magnetised
plasma confined in the tachocline may correlate with ob-
served sunspot activity over time [9, 10]. An interesting
example is the propagation of Rossby waves, which are
expected to play an important role in space weather pre-
diction, similar to their crucial role in jet stream activity
on Earth [11, 12].

The dynamics of the plasma within this thin layer is
typically approximated by the shallow water magnetohy-
drodynamic equations [13–15]. Within this framework,
the dynamics of the plasma along the transverse (ra-
dial) direction is assumed to be approximately constant,
effectively reducing the problem to two spatial dimen-
sions. This system of equations has been extensively
studied by various analytical approaches and nonlinear
numerical simulations, leading to the realisation that the
tachocline can host a rich structure of magnetohydro-
dynamic (MHD) oscillations, including Kelvin, Yanai,
Rossby and inertial-gravity waves [14–22]. Of particular
importance are Rossby waves which have recently been
observed on the surface of the Sun (see e.g. [23–26]).

Our work in this paper is concerned with a deeper un-
derstanding of the properties of this rich structure of
MHD oscillations, and is motivated by recent develop-
ments in uncovering topological protection mechanisms
in continuous classical hydrodynamic systems (see e.g.
[27–32]). The prime example of such phenomena is the
topological protection of Kelvin and Yanai waves in the
Earth’s oceans and atmosphere [33–35], modelled by non-
magnetic shallow water equations, while recent work un-
covered topological imprints in the context of stellar oscil-
lations [36, 37]. The existence of topological mechanisms
is not only interesting, but also crucial for our under-
standing of the robust features of the oscillation spec-
trum that is ultimately expected to be inferred through
asteroseismology observations. The inner structure of the
Sun is a complex dynamical system, and the MHD shal-
low water equations modelling the tachocline are at best
an approximation to the actual dynamics. Topological
properties associated with a given system typically in-
dicate that not too drastic deformations of the system,
including deformations of the Hamiltonian (and hence of
the dynamics at the tachocline) or deformations of the
geometry of certain parts of the system (e.g. the equato-
rial plane of the solar tachocline), do not lead to changes
of physical observables (e.g. the spectrum of MHD oscil-
lations at the tachocline).

In light of the above, we begin in Section II with a
review of the MHD shallow water equations while in Sec-
tion III we revisit the spectrum of equatorially trapped
waves in the solar tachocline using the β-plane approxi-
mation in which the spatial dependence of the Coriollis
force at the equator is taken into account. This anal-
ysis was first carried out in [21] but, as we will show,
we find important differences in the spectrum compared
to previous literature. These differences have implica-

tions for the potential imprint of the tachocline on the
physics behind certain solar cycles. In Section IV we con-
sider the MHD shallow water spectrum from the point of
view of band structure theory and its topological prop-
erties, in particular the Chern number associated with
each band. To do this, we perform an analysis of the
spectrum near the equator using the f-plane approxima-
tion in which the Corriolis force is assumed to abruptly
change sign at the equator, as pioneered in [34]. The
main result is that magneto-Kelvin and magneto-Yanai
waves are robust features of the MHD spectrum in the
solar tachocline. In Section V we conclude with some ob-
servations and future directions. We also provide some
appendices, including Appendix A with a derivation of
the MHD shallow water equations; Appendix B with a
comparison with previous literature; Appendix C with
a discussion of the MHD equatorial spectrum with con-
stant magnetic fields; and finally Appendix D with de-
tails on the calculation of the Berry curvature, the f-plane
approximation at the equator, and further topological in-
sights into the MHD shallow water system.

II. MAGNETIC SHALLOW WATER
EQUATIONS

The MHD shallow water equations can be derived by
considering a three dimensional incompressible plasma
bounded between a rigid (bottom) boundary and a (top)
dynamical interface (see Appendix A for a derivation).
These equations in two spatial dimensions can be written
in the form

Dth = −h∇µu
µ , (1a)

Dtu
µ = −g∇µη +

1

µ0ρ
Bν∇νB

µ (1b)

DtB
µ = Bν∇νu

µ , (1c)

∇µ(hB
µ) = 0 , (1d)

where we have introduced the operator Dt = ∂t + uµ∇µ,
the covariant derivative ∇µ associated with the two di-
mensional spatial metric gµν with coordinates Xµ, the
height h of the tachocline, η the dynamical field that
accounts for changes in height with respect to a latitu-
dinally uniform reference point. Together with the to-
pography H, which accounts for the oblateness of the
rigid bottom of the tachocline, it forms the total height
h = η + H. We also introduced the (constant) density
ρ ∼ 200kgm−3 of the plasma, the fluid velocity uµ, the
magnetic field Bµ, the magnetic permittivity µ0 and the
effective acceleration of gravity g in the tachocline. The
Greek indices µ, ν only run over two spatial directions.
Eq. (1d) descends from the Gauss law in three dimensions
(see Appendix A) and similarly to the three dimensional
Gauss law it is not an independent equation. Indeed to
see this we note that in general we find after some non-
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trivial algebra

Dt
∇µ(hB

µ)

h
= 0 , (2)

upon using Eqs. (1a) and (1c) as well as the symmetry
properties of the Riemann tensor. Indeed this condition
implies that either Dth ∼ ∇µ(hB

µ) and hence Eq. (1d) is
equivalent to (1a), orDt∇µ(hB

µ) = 0 and hence Eq. (1d)
becomes a constraint equation that only needs to be sat-
isfied at an initial Cauchy slice. For the configurations
studied in this paper the latter condition holds.

In the context of the solar tachocline, Eqs. (1) describe
MHD flows on an approximately thin spherical shell with
line element

ds2 = gµνdX
µdXν = L2(dθ2 + sin2(θ)dϕ2) , (3)

and radius L ∼ 109m, where ϕ is the longitudinal co-
ordinate and θ the latitudinal coordinate. The strong
magnetic field living on the tachocline is expected to be
induced by the non-uniform profile of the toroidal rota-
tion in the convective zone. In this picture, such motion
from above would carry magnetic fields from the convec-
tive zone into stretched toroidal magnetic fields in the
tachocline [21, 38, 39]. We thus focus on non-uniform
toroidal magnetic fields which in equilibrium (see Fig. 1)
take the form

Bµ = δµϕB0 sin(θ) cos(θ) , (4)

where δµν is the Kronecker delta and B0 is typically of or-
der 105 G. In addition the plasma living on the tachocline
is assumed to rotating with uniform angular velocity
Ω0 ∼ 2× 10−6s−1 inherited from the rigid motion of the
radiative core. Thus in equilibrium we have uµ = δµϕΩ0

and

η − C =

1

2g

(
Ω2

0 cos
2(θ)− B2

0

µ0ρ

3 sin2(θ) cos4(θ) + cos6(θ)

6

)
,

(5)

where C is an integration constant. We are interested in
equilibrium solutions for which h0 is uniform along the
latitudinal direction. Hence, although η0 is non-uniform
along the latitudinal direction, the topography H of
the bottom of the tachocline can be chosen such that
h0 is uniform by appropriately using Eq. (5). This
choice of H can be understood as accounting for the
oblateness of the Sun due to its rotation, in a similar
way to accounting for the oblateness of the Earth to
approximate the depth of the ocean as uniform along its
latitude. It is clear that this equilibrium configuration
for the tachocline solves all equations in (1). Our goal
now is to obtain the spectrum of MHD waves under
certain approximations. In the next section we focus on
finding the spectra localised at the equator using the
β-plane approximation while in the following section we
study the spectra away from the equator as well as on
the equator using the f-plane approximation in order
to extract robust properties of magnetohydrodynamic
waves.

III. EQUATORIAL SPECTRUM WITH
TOROIDAL MAGNETIC FIELDS

In order to obtain the spectrum of equatorial magne-
tohydrodynamic waves we fluctuate Eqs. (1) around the
equilibrium configuration with constant magnetic field,
angular velocity and height h0,Ω0, B0 respectively. We
thus introduce arbitrary perturbations around the equi-
librium state according to h = h0+δh, uµ = δµϕΩ0+δuµ,

and Bµ = δµϕB0 sin(θ) cos(θ) + δBµ. By performing a

boost to a rotating frame where ϕ → ϕ − Ω0t, Eqs. (1)
become

(∂t −H)
[
δh δuϕ δuθ δBϕ δBθ

]T
= 0 , (6a)

where the effective Hamiltonian H is given by

H =


0 −h0∂ϕ −h0∂θ − h0 cot(θ) 0 0

− g
L2 sin2(θ)

∂ϕ 0 −2Ω0 cot(θ)
1

µ0ρ
B0l∂ϕ

2
µ0ρ

B0

(
3
2 cos

2(θ)− 1
2 sin

2(θ)
)

− g
L2 ∂θ 2Ω0l 0 − 2

µ0ρ
B0l

2 1
µ0ρ

B0l∂ϕ
0 B0l∂ϕ B0(sin

2(θ)− cos2(θ)) 0 0
0 0 B0l∂ϕ 0 0

 , (6b)

and where we defined l = cos(θ) sin(θ). We will now
simplify Eq. (6b) by assuming that we are near enough
to the equator so that sin2(θ) ≈ 1 and cos2(θ) ≈ 0. It
is then possible to bring Eqs. (6) to a more workable
form via the rescaling of the coordinates and fluctuations

according to[
∂ϕ
∂θ

]
= 2√

G

[
∂x
∂y

]
∂t =2Ω0∂τ[

δBϕ

δBθ

]
=B0

[
δBx

δBy

] [
δuϕ

δuθ

]
=
√
GΩ0

[
δux

δuy

]
.

(7)
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We note that in Eq. (7) the (dimensionless) reduced grav-
ity G = gh0/(L

2Ω2
0) is taken to be approximately in the

range 10−3 ≤ G ≤ 10−1 in the overshoot part of the
tachocline [21]. Because the effective Hamiltonian (6b)
is independent of τ and x as defined in (7), we can assume
that solutions to (6) are of the form ∼ eiωτ−ikxx with fre-
quency ω and momentum k. Introducing this ansatz in
Eq. (6) we find

−iω ikx −∂y + f1 0 0
ikx −iω m ikxmγ2 f2
−∂y −m −iω 0 ikxmγ2

0 ikxm f3 −iω 0
0 0 ikxm 0 −iω




δĥ
δux

δuy

δBx

δBy

 = 0 ,

(8)

where we have defined m = − cos(θ). We have also intro-

duced the ratio γ2 =
v2
A

gh0
where vA is the Alfvén speed

vA = B0L/
√
µ0ρ and defined the rescaled δĥ fluctuation

according to δĥ = δh
h0
. We take vA = 126ms−1 through-

out this paper. In Eq. (8) we have also introduced the
functions

f1 =

√
G
2

m , f2 = −1

2
γ2

√
G , f3 =

1

2

√
G . (9)

Because L ≫
√
gh0/Ω0 for the case of the Sun, terms in-

volving G are subleading and hence we are free to discard
all terms in Eq. (9). We note, however, that there is no
practical obstruction in including them but their effect
on the spectrum for small G (as in the overshoot layer)
is minimal and does not change the results qualitatively.

Since we are interested in the behavior near the equa-
tor, we use the β-plane approximation for both the Cori-
olis force as well as for the non-uniform magnetic field
[21], that is, we expand m as

m ≈ βy , (10)

where we have defined β =
√
G/2 [40]. Under these as-

sumptions it is possible to eliminate δBx, δBy and δux

from Eq. (8) and obtain a dimensionally reduced system
of equations of the form

(∂y −Q)

[
δuy

δĥ

]
= 0 , (11a)

where Q is given by the matrix

Q = kxωβy
ω2−γ2k2

xβ
2y2 −iω +

iωk2
x

ω2−γ2k2
xβ

2y2

−iω + i
k2
x

ω β2y2γ2 + iωβ2y2

ω2−γ2k2
xβ

2y2
−ωkxβy

ω2−γ2k2
xβ

2y2

 .

(11b)

There are two types of solutions to Eq. (11), namely the
magneto-Kelvin solution and the quantum harmonic os-
cillator (QHO) solutions. We discuss these two possibil-
ities in order.

-0.2 -0.1 0.1 0.2
kx

-0.4

-0.2

0.2

0.4

ω

Kelvin

n=0

n=1

n=2

Figure 2: Spectrum for equatorial
magnetohydrodynamics with a non-uniform magnetic
field including the magneto-Kelvin wave (blue curve)

and the n = 0, 1, 2 solutions of (19). The n = 0
solutions (orange curves) include a slow magneto-Yanai
wave passing through ω = 0 and a fast magneto-Yanai
wave that asymptotes to the line ω = −kx as kx → −∞.
The green and red curves correspond to the n = 1 and
n = 2 solutions, respectively. For each n ≥ 1 we find a
magneto-Rossby wave passing through ω = 0 and a

magneto-inertial-gravity wave with ω ̸= 0 at the origin
kx = 0. The dashed lines correspond to (unphysical)
non-normalizable modes. We used the values γ = 1.56

and G = 10−3.

A. The magneto-Kelvin solution

In order to find the magneto-Kelvin solution we expand
Eq. (11) in powers of y near the equator (y = 0) and find[

∂y − βy kx

ω iω − ik2
x

ω

iω ∂y + βy kx

ω

] [
δuy

δĥ

]
= O(β2y2) . (12)

Eq. (12) admits a solution if ω = ckx, with c = ±1, and
the fluctuations take the form[

δuy

δĥ

]
=

[
0

C exp(− 1
2cβy

2)

]
, (13)

where C is an arbitrary constant. We require that this
solution is normalizable when y → ∞ which enforces that

c = 1. This ensures that the fluctation δĥ is exponen-
tionally decaying away from the equator. The dispersion
relation ω = kx corresponds to the blue line in Fig. 2.
The dispersion relation of the magneto-Kelvin wave is
in fact the same as the Kelvin wave in ocean dynamics
[41]. In Fig. 2 we have also plotted with a dashed line
the (unphysical) non-normalizable mode ω = −kx.

B. The quantum harmonic oscillator solutions

Similarly to the case of vanishing magnetic field [41],
this class of solutions includes an infinite tower of exci-
tations. In order to obtain them, we map Eq. (11) to a
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QHO oscillator problem in terms of some field U deter-
mined by

∂2
yU =

[
M +Ny2 +O(β4y4)

]
U , (14)

where M and N are coefficients that do not depend on y.

To achieve this, we first solve Eq. (11) for δĥ and expand
around the equator (y = 0) to obtain an equation of the
form

∂2
yδu

y =
[
Ay2 −B +O(β4y4)

]
δuy

+ 2y
[
C +Dy2 +O(β4y4)

]
∂yδu

y .
(15)

Here the coefficients A,B,C,D are given in terms of the
frequency ω, momentum k and the physical parameters
G and γ according to

A =

√
G3γ2k3x
8ω3

+
1

4
G
(
γ2k2x + 1

)
−

√
G3γ2k3x

4ω (k2x − ω2)
,

B = ω2 − k2x −
√
Gkx
2ω

, C =
Gγ2k4x

4ω2(k2x − ω2)
,

D =
G2γ4k6x

16ω4 (k2x − ω2)
− G2γ4k6x

8ω2 (k2x − ω2)
2 .

(16)

Our goal is to recast Eq. (15) with coefficients (16) into
the QHO form of Eq. (14). To this end we define a fluc-
tuation δũy according to

δuy = e
1
2Cy2+ 1

4Dy4+O(y6)δũy . (17)

Using Eq. 17 in Eq. (15) we can bring it to the form (14)
such that

∂2
yδũ

y =
[
(A+ C2 − 3D)y2 − (B + C) +O(β4y4)

]
δũy ,

(18)

and hence we identify U = δũy, M = −(B + C) and
N = A + C2 − 3D. Given the QHO form of (18) it is
straightforward to find solutions, which are given by the
infinite tower of excitations

B + C = (2n+ 1)
√

A+ C2 − 3D , n = 0, 1, 2... ,
(19)

for each value of n. We note the particular importance in
taking into account the coefficient D appearing at order
O(y3) in Eq. (15) since it contributes at order O(y2) in
the QHO equation (18). In terms of the actual fluctua-
tions δuy, the QHO solutions take the form

δuy ∼ e
1
2 (C−

√
A+C2−3D)y2+ 1

4Dy4+O(β6y6) . (20)

Similarly to the analysis of the magneto-Kelvin wave we
require QHO solutions for δuy to be bounded as y → ∞
up to corrections of O(y4). From Eq. (20) it thus follows
that we must have√

A+ C2 − 3D − C ≥ 0 , (21)

-0.2 -0.1 0.1 0.2
kx

-0.4

-0.2

0.2

0.4

ω

Kelvin

n=0

n=1

n=2

Figure 3: Spectrum for ordinary equatorial
hydrodynamics as originally derived in Ref. [41]. We
took G = 0.001. There are two chiral waves, which are
the Kelvin wave and the chiral low-frequency part of
the n = 0 solution, which is called the Yanai wave.

and we therefore discard solutions that violate Eq. (21).

Finally, taking into account all these constraints and
combining the Kelvin and QHO solutions, we find
the spectrum for equatorial MHD waves in the solar
tachocline portrayed in Fig. 2. This spectrum has the
symmetry (ω, kx) → −(ω, kx). The blue line appearing
Fig. 2 is the magneto-Kelvin wave solution with ω = kx
in Eq. (13) while the dashed line with ω = −kx is the
(unphysical) non-normalizable solution of Eq. (13). The
orange lines are the n = 0 solutions given by Eq. (19) and
referred to as magneto-Yanai waves. The slow magneto-
Yanai wave approaches ω → 0 for kx → 0 and ends
at a given value of kx < 0 beyond which it no longer
satisfies the normalizability condition (21) as indicated
by the dashed lines. The fast magneto-Yanai wave ap-
proaches the line w = −kx as kx → −∞ and approaches
the magneto-Kelvin wave for kx → ∞. Both slow and
fast magneto-Yanai waves are not chiral, meaning that
they travel eastwards for certain values of kx and west-
wards for other values of kx. In turn, for n = 1 we find a
magneto-Rossby wave, represented by the green curve in
Fig. 2 that approaches ω → 0 for kx → 0. This wave, as
the slow magneto-Yanai wave, ends at a particular value
of kx < 0 as indicated by the dashed lines that no longer
satisfy (21). In addition, for n = 1 there is a magneto-
inertial-gravity wave, also portrayed as a green curve in
Fig. 2, that has ω ̸= 0 for kx = 0. The picture is similar
for solutions of (19) with n ≥ 1. The spectrum of equa-
torial MHD waves had been previous derived in [21] and
does not agree with the spectrum we derived here. We
comment further on these differences in Appendix B.

It is instructive to compare the details of this spec-
trum with that of ocean dynamics [41] in which magnetic
fields vanish as shown in Fig. 3. The spectrum of Fig. 3
has qualitative differences with respect to the case of a
toroidal magnetic field in Fig. 2. In particular, the Yanai
wave (orange curve) in Fig. 3 is a single continuous curve
propagating westwards while when turning on toroidal
magnetic fields it splits into two waves, namely, the slow
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and fast magneto-Yanai waves. The other qualitative fea-
ture is that the Yanai-wave and the Rossby-wave (green
curve passing through ω = 0) in Fig. 3 satisfy the normal-
izability condition (21) for all values of kx. This means
that contrary to the magneto-Yanai and magneto-Rossby
waves in Fig. 2, the Yanai and Rossby waves are con-
tinuous and well defined as kx → −∞. The remaining
higher order modes are qualitatively similar in the case
of toroidal or vanishing magnetic fields.

We note that the spectrum of ocean dynamics pre-
sented in Fig. 3 is qualitatively similar to the spectrum
of equatorial MHD waves in the presence of a constant
magnetic field. We discuss this case in detail in Appendix
C. In the next section we study further the properties of
equatorial MHD waves in the presence of toroidal mag-
netic fields using the f-plane approximation and show
that magneto-Kelvin and magneto-Yanai waves are topo-
logically protected and hence expected to be a robust
feature of the equatorial MHD spectrum.

IV. TOPOLOGY OF PLASMA OSCILLATIONS

In the previous section, we obtained the equatorial
MHD spectrum with toroidal magnetic fields. In this sec-
tion we wish to understand what are the robust proper-
ties of this spectrum, that is, what properties are topolog-
ically protected, say by slight deformations of the Hamil-
tonian or by changes of the shape of the ”interface”
(equator) separating the north and south hemispheres.
This analysis can be carried out by viewing each hemi-
sphere as a distinct topological system separated by the
equator that acts as an interface between the two ”bulk”
systems, as shown in [33] for ocean dynamics (see also
[30] for general axisymmetric surfaces). Here we gener-
alise this analysis to MHD.

To begin with we define the ”bulk” topological sys-
tems as the two systems governed by a Hamiltonian H
at a point θ = θ0 on each hemisphere away from the
poles of the sphere and away from the equator. This
approximation is what is commonly referred to as the f-
plane approximation [42]. Within this approximation the
system is translational invariant in the two spatial direc-
tions. Indeed, by looking at linear fluctuations around
the equilibrium state detailed in Section (II) using plane-

waves of the form ∼ exp(iωt− ik⃗.x⃗) we are able to write
Eq. (8) as

(ω −H)
[
δĥ δux δuy δBx δBy

]T
= 0 , (22a)

with

H =


0 kx ky 0 0
kx 0 −im kxmγ2 0
ky im 0 0 kxmγ2

0 kxm 0 0 0
0 0 kxm 0 0

 , (22b)

where k2 = k2x+k2y. For simplicity, we have assumed that
we are far enough from the poles so that sin(θ) ≈ 1 and

Figure 4: f-plane spectrum including bulk bands (in
blue) and interface modes (in orange and green) as
derived in App. D. The blue bands include the

magneto-Rossby modes passing through ω = 0 when
kx = 0 and the magneto-inertial-gravity modes with
ω ̸= 0. The orange curve is the chiral magneto-Kelvin

wave and the green solid curve the chiral
magneto-Yanai wave. The grey dashed line is the
non-normalizable mode. We took γ = 0.156 and

regulator ϵ = 0.2 (see Appendix D).

m ≈ ±1 with m = +1 for the northern hemisphere and
m = −1 for the southern hemisphere. We note that be-
cause we are focusing on a specific point θ = θ0 it does not
matter whether the magnetic field is toroidal or constant
in equilibrium. By solving Eq. (22) we find five modes.
The spectrum reveals the existence of a trivial mode with
ω = 0, two magneto-Rossby modes that pass through
ω = 0 for kx = 0 and two magneto-inertial-gravity modes
that pass through kx = 0 for ω ̸= 0. These modes corre-
spond to the blue regions presented in Fig. 4 for arbitrary
ky and were derived in [17]. Referring to each of these
modes as ”bands”, of particular importance is the fact
that there is a ”band gap” in the spectrum with m being
the mass gap, that is, there is a finite distance in mo-
mentum space between the magneto-Rossby bands and
the magneto-inertial-gravity bands where the two bands
do not cross. This gap only closes for large values of γ.
From the point of view of the bulk-interface correspon-
dence in condensed matter [43] this suggests the existence
of topological properties in the spectrum. In particular,
to each band we may associate a Chern number C whose
difference across the two sides of the equator (∆C) can
reveal the number of localised chiral modes propagating
at the equator. In order to extract the Chern number we
must compute the Berry curvature Fxy, which for con-
tinuous systems typically requires introducing an ultra-
violet, short-distance, cut-off. We discuss how to prop-
erly introduce this cut-off as well as other relevant tech-
nical details in Appendix D. The Chern number is then
defined by appropriately integrating over the difference
in Berry curvatures ∆Fxy between the two hemispheres
for a single band. Choosing the band corresponding to
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the magneto-inertial-gravity waves we find

∆C =
1

2π

∫
dkxdky∆Fxy = 2 . (23)

This is the same result that is obtained for ocean dy-
namics with vanishing magnetic fields [33] and suggests
that there are two topologically protected chiral modes
propagating along the equator.

In order to precisely identify the nature of these two
chiral modes, we solve the equatorial MHD problem us-
ing a different approximation scheme. To wit, we con-
sider applying the f-plane approximation to the case of a
sharp interface by gluing the two hemispheres at y = 0,
as was done for ocean dynamics in [33]. This detailed
setup is given in Appendix D and precisely leads to
the two chiral modes presented in Fig. 4. The orange
curve in Fig. 4 is the magneto-Kelvin wave connect-
ing the magneto-Rossby band to the magneto-inertial-
gravity band for kx > 0 in the upper half plane. In
turn the green curve in Fig. 4 is the magneto-Yanai wave
connecting the magneto-Rossby band at kx < 0 to the
magneto-inertial-gravity band for ω ̸= 0 at kx = 0 in the
upper half plane. The dashed line is the non-normalizable
mode equivalent to the one found in Fig. 2. This analy-
sis clearly shows the topological nature of the magneto-
Kelvin and magneto-Yanai waves. We emphasize that
the topological properties of the spectrum are a conse-
quence of the bulk Hamiltonian (22b) with associated
Chern number (23). As such, the existence of 2 chiral
modes should appear in a variety of contexts, e.g. with
different boundary conditions for which (22b) is the bulk
Hamiltonian. Indeed, in Appendix D3 we show that by
solving a similar problem with two edge boundaries on
an infinite strip leads to 2 localised edge modes on each
of the two boundaries.

As we noted above, the ”bulk” analysis that we car-
ried out is applicable in both the case of uniform and
non-uniform magnetic fields. From this point of view,
one expects that if the interface is slightly deformed away
from a ”sharp interface” as in the case of the β-plane ap-
proximation, the chiral edge modes (magneto-Kelvin and
magneto-Yanai) remain topologically protected. Focus-
ing first on the case of constant magnetic fields B = B0,
which we reviewed in Appendix C, we clearly see the pres-
ence of magneto-Kelvin (blue curve) and magneto-Yanai
(orange curve) waves in Fig. 6. A close analysis reveals
that these two modes are the only two propagating chi-
ral modes while the remaining higher-order excitations
in Fig. 6 can be interpreted as non-chiral ”bulk” modes.
Thus in this context we see that the bulk-edge corre-
spondence holds. The situation is not as a clear in the
case of a non-uniform magnetic field for which the MHD
spectrum is presented in Fig. 2. In this context, there
are also propagating magneto-Kelvin and magneto-Yanai
waves but only the magneto-Kelvin wave is chiral and the
magneto-Yanai wave has been split into two branches of
lower and upper magneto-Yanai waves. This suggests
that the bulk-edge correspondence does not hold for the

non-uniform magnetic field case. However, we want to
clarify that the splitting of the magneto-Yanai wave may
be a feature of the truncation that we employed when
using the β-plane approximation (see e.g. (14) which
was expanded up to order y4) and mapping it to a QHO
problem. Thus this splitting may not necessarily be a
physical feature of the actual spectrum. Indeed, in ear-
lier literature in which a different truncation was used,
the magneto-Yanai wave appeared to be split into 4 parts
(see Fig. 5). It would be useful to clarify this by attempt-
ing to solve the problem analytically employing more ac-
curate β-plane approximations [44] or by performing full
numerical simulations as in [45, 46] and extract the ex-
act spectrum of equatorial MHD waves with non-uniform
magnetic fields. It is our expectation that, given the
topological properties of magneto-Kelvin and magneto-
Yanai waves, such gap in the magneto-Yanai wave is ac-
tually not present in a full numerical simulation.

V. DISCUSSION

In this work we derived the spectrum of MHD os-
cillations focusing on the solar tachocline with toroidal
magnetic fields. We first derived the magnetohydrody-
namic shallow water equations imposing adjective bound-
ary conditions and found the equations that coincide with
those previously formulated by Gilman [13]. We further-
more showed that the shallow water analogue of Gauss
law becomes a redundant equation as is the case for ordi-
nary MHD. By systematically expanding the magnetohy-
drodynamic equations which are subjected to the β-plane
approximation near the equator, we uncovered new qual-
itative features of the solar tachocline spectrum. Partic-
ularly, we did not find slow magneto-Rossby waves as dis-
cussed in [21], which were previously argued to produce
the 100-year period Gleissberg cycle [21]. Assuming that
we have solar waves with wave vector kx ∼

√
G/2, the

slowest magneto-Rossby wave corresponding to Fig. (2)
has a period of around seven years. The second slowest
wave appears due to the splitting of the magneto-Yanai
wave caused by the non-uniform magnetic field. For
kx ∼

√
G/2, this wave has a period of around three years

while the magneto-Kelvin wave has a period of around
2 years. These types of oscillations can potentially be
correlated with solar annual oscillations and solar cycles.
These results hold qualitatively for any star with more
than 30% of solar mass in which a tachocline layer is
expected to be formed as long as G is small.
In the second part of this work we focused on under-

standing topological poperties of MHD plasma oscilla-
tions. In order to do so, we studied the MHD shallow wa-
ter dynamics from the point of view of band theory and
found topological properties associated with the MHD
shallow water Hamiltonian in the ”bulk” (i.e. away from
the equator and the poles). This allowed us to associate a
Chern number to the upper band (i.e. magneto-inertial-
gravity waves) whose difference across the equator yields
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a topological invariant: the total number of chiral edge
modes. By explicitly solving for the equatorial spectrum
using the f-plane approximation we deduced that these
two chiral modes correspond to the magneto-Kelvin and
magneto-Yanai waves. These two modes are robust prop-
erties of the equatorial MHD spectrum as they are stable
against deformations of the Hamiltonian or deformations
of the equator. This motivates further taking into con-
sideration the oscillations caused by magneto-Kelvin and
magneto-Yanai waves as potential causal explanations for
different types of solar activity.

The methods employed here can in principle be
used to study a variety of different contexts, such as
axisymmetric geometries as in [30], the inclusion of
dissipative effects such as viscosity and resistivity in
MHD [47–49], different magnetic field configurations
such as double band magnetic field configurations

[22], oblateness effects [50], as well as the topological
properties of the magnetic bouyancy instability as in
[36, 37]. In a related direction, it would be interesting
to study whether topology plays a role when considering
a stratified (compressible) fluid structure within the
Sun in which case novel effects appear such as thermal
Rossby waves and retrograde vorticity modes [46]. We
leave these interesting directions for future research.
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Appendix A: Derivation of the shallow water magnetohydrodynamics equations

In order to derive the shallow water MHD equations we consider a three dimensional magnetohydrodynamics fluid
placed in between a (top) dynamical interface located at F = Z−η(t,X, Y ) = 0 and a (bottom) rigid boundary located
at G = Z+H(X,Y ) = 0 along the Z direction, η is the field that accounts from changes in height due to a dynamical
interface while H is the topography. Here X,Y are spatial directions and t the time direction. In the solar context,
the rigid boundary can model the boundary between the radiative zone and the bottom of the tachocline while the
top interface models the boundary between the radiative and the overshoot part of the tachocline. Alternatively, the
rigid boundary can model the bottom of the overshoot part of the tachocline while the interface models the boundary
between the overshoot part of the tachocline and the convective zone (see e.g. [13]). The magnetohydrodynamics
equations governing the three dimensional incompressible bulk fluid are given by

∂tρ+ ∇̃A(ρv
A) = 0 ,

∇̃Av
A = 0 ,

ρD̃tv
A = −∇̃A

(
P +

1

2µ0
B2

)
+

1

µ0
BB∇BB

A + ρgδAZ ,

∂tB
A = BB∇̃Bv

A − vB∇̃BB
A ,

∇̃AB
A = 0 ,

(A1)

where ∇̃ is the three dimensional covariant derivative associated with the three dimensional spatial metric gAB , the
operator D̃t is defined as D̃t = ∂t + vA∇̃A, ρ is the mass density of the three dimensional fluid velocity, P is the
pressure, BA the three dimensional magnetic field, µ0 the magnetic permittivity and g the acceleration of gravity. The
indices A,B, ... run over the three spatial directions X,Y, Z. We parameterise the components of vA and BA according
to vA = (uµ, vZ) and BA = (Bµ, BZ) where the indices µ, ν... run over the directions X,Y . We note that the fact

that the fluid is incompressible means that the density ρ is constant, i.e. D̃tρ = 0. For the solar tachocline this is
justified given that the thickness of the tachocline is much smaller than the length scale of density variations across the
tachocline [13]. Also note that the last equation in (A1), the Gauss law, is a constraint equation on an initial Cauchy

slice since D̃t∇̃AB
A = 0 and hence only needs to be satisfied for an initial magnetic field configuration. Eqs. (A1)

must be supplemented with boundary conditions for the fluid velocity and magnetic field at the bottom boundary
and the interface. We take advective boundary conditions for the fluid velocity and similarly for the magnetic field
as expected for the solar tachocline [13],

D̃tF |Z=η = 0 , BA∇̃AF |Z=η = 0 ,

D̃tG|Z=−H = 0 , BA∇̃AG|Z=−H = 0 .
(A2)

We also need to specify boundary conditions for the pressure P and the modulus of the magnetic field B2 at Z = η,
in particular

P |Z=η = P0 , B2|Z=η = B2
0 , (A3)

for constant P0 and B2
0 . To make further progress we focus on geometries which are trivial along the Z direction and

hence focus on metrics that take the form

gABdX
AdXB = dZ2 + gµνdX

µdXν , (A4)

where gµν is an arbitrary two dimensional spatial metric independent of Z. In the main text we take gµν to be the two
dimensional spherical metric but here, for completeness, we leave it arbitrary. Under this assumption the boundary
conditions (A2) yield

vZ −Dtη|Z=η = 0 , BZ −Bµ∇µη|Z=η = 0 ,

vZ + uµ∇µH|Z=−H = 0 , BZ +Bµ∇µH|Z=−H = 0 ,
(A5)

where the operator Dt is defined as Dt = ∂t + uµ∇µ with ∇µ being the covariant derivative associated to the spatial
metric gµν . In order to proceed further we must specify a gradient ordering for the hydrodynamic expansion. We
take η ∼ O(1) in order to account for interface effects at the same order as the fluid velocity uµ ∼ O(1) [54]. In this
case, the boundary conditions (A5) tell us that vZ ∼ BZ ∼ O(∂) given that we take η ∼ O(1). This means that we
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can typically ignore terms involving vZ and BZ . For instance, if we pick the Z component of the third equation in
(A1) we can ignore vZ and BZ terms. Integrating it from Z to η we obtain the pressure

P +
1

2µ0
B2 = P0 +

1

2µ0
B2

0 + ρg(η − Z) +O(∂) , (A6)

where we have used (A3). Integrating the remaining equations in (A1) from Z = −H to Z = η and using (A5) and
(A6), we obtain

∂tη +∇µ ((η +H)uµ) = 0 ,

Dtu
µ = g∇µη +

1

µ0ρ
Bν∇νB

µ ,

DtB
µ = Bν∇νB

µ ,

∇µ ((η +H)Bµ) = 0 .

(A7)

By defining the height h = η +H we straightforwardly obtain Eqs. (1). We note that the Z component of the fourth
equation in (A1) does not feature in (A7) since it is of order O(∂2) and hence can be neglected.

Appendix B: Comparison with earlier literature

As we mentioned in the main text, the spectrum of equatorial MHD waves in the solar tachocline had previously
been derived in Ref. [21]. However, the spectrum derived in [21] differs from the one we obtained in Fig. 2 in several
ways. These differences are rooted in the fact that Ref. [21] has arrived at an equation analogous to Eq. (15) which
takes the form

∂2
yδu

y =
[
Ay2 −B +O(y4)

]
δuy + 2y

[
C +O(y2)

]
∂yδu

y . (B1)

Comparison between Eq. (B1) and Eq. (15) reveals that the spectrum obtained in Fig. 5 did not consider the existence
of the coefficient D appearing in (16). However, as explained in the main text, the coefficient D is required for the
consistency of the quantum harmonic oscillator equation (18). Indeed, if we had ignored the coefficient D and
computed the spectrum using Eq. (B1) we would find the spectrum depicted in Fig. 5, as was obtained in Ref. [21].
Comparing the spectrum in Fig. 5 with that of Fig. 2 we see various qualitatively differences. In particular, the

-0.2 -0.1 0.1 0.2
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Figure 5: Spectrum found in Ref. [21] by ignoring the coefficient D with γ = 1.56 and G = 0.001. The blue curve is
the magneto-Kelvin wave, the orange lines are the magneto-Yanai waves, the remaining lines contain a set of 2

magneto-Rossby waves and one magneto-inertial-gravity wave for each n ≥ 1. The dashed line is the (unphysical)
non-normalizable mode with ω = −kx.

spectrum of Fig. 5 contains another set of modes for each n ≥ 1 that are referred to as ”slow magneto-Rossby waves”
in Ref. [21] which ”hover” slightly above ω = 0. These modes are absent from Fig. 2 when including the coefficient
D. In addition, we see that in Fig. 5 the magneto-Yanai wave (in orange) apears to be discontinuous and split into
various parts around the non-normalisable solution ω = −kx. This behaviour is absent in the spectrum of Fig. 2 in
which the magneto-Yanai wave is composed of two continuous curves. Furthermore, in Fig. 5 the lower part of the
magneto-Yanai wave touches the magneto-Rossby wave at a finite value of kx < 0 in the upper half plane. In contrast,
the magneto-Yanai wave does not touch the magneto-Rossby wave in Fig. 2 due to the normalization condition in
Eq. (21).
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Appendix C: Equatorial spectrum with constant magnetic fields

Even though not being the most relevant situation for the solar tachocline, it is interesting to consider the case
in which the equilibrium configuration has a uniform magnetic field, i.e. Bµ

0 = δµϕB0. The spectrum of equatorial

magnetohydrodynamics in this case was derived in Ref. [21] and here we briefly review this spectrum but give it a
slightly different perspective. Following the procedure of Section II for this equilibrium configuration we obtain the

magneto-Kelvin solution with dispersion relation ω =
√
1 + γ2k. The remaining solutions can be obtained again by

mapping the differential equations to a QHO equation. In this case a transformation like Eq. (17) is not needed
and one is led to the spectrum given in Fig. 6 on the left hand side. At first sight the spectrum appears to be
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Figure 6: Spectrum for equatorial magnetohydrodynamics with a uniform magnetic field. The figure on the right
hand side is the spectrum as computed earlier in Ref. [21]. The figure on the right side is the same spectrum in the

Alfvén frame ω → ω′ = ω + γk. We took the values γ = 1.56 and G = 0.001.

somewhat different than the case of vanishing magnetic fields of Fig. 3 but in fact the only qualitative difference is
that the magneto-Rossby waves (the n ≥ 1 solutions passing through ω = 0) are tilted in the clockwise direction.
In fact, instead of analysing the spectrum in a frame co-rotating with the fluid at the equator, we can adjust the
boost to a frame co-rotating with the Alfvén wave by performing the transformation ω → ω′ = ω + γk leading to
the right hand side of Fig. 6. In this Alfvén frame of reference, we can clearly see the existence of two chiral modes,
the magneto-Kelvin (blue curve) and magneto-Yanai (orange curve) waves which connect the magneto-Rossby waves
to the magneto-inertial-gravity waves as in Fig. 3 for the case of vanishing magnetic fields. The remaining curves
constitute the higher-order modes for n ≥ 1 while the dashed gray line is a non-normalisable mode. The topological
analysis we performed in Section IV also applies to the spectrum of Fig. 6 and indeed we again find the existence of
two chiral modes consistent with the bulk-edge correspondence.

Appendix D: f-plane, Berry curvature and topological insulators

In Section IV we introduced the f-plane approximation both away from the equator and at the equator. We also
discussed the computation of the Berry curvature. In this section we give further details on these aspects and also
consider the analogue setup of a ”topological insulator” to highlight the topological origin of the magneto-Kelvin and
magneto-Yanai waves.

1. f-plane approximation and Berry curvature

As discussed in Section IV, the calculation of the Berry curvature for continuous systems and, in particular, of the
equatorial spectrum using the f-plane approximation requires the introduction of a ultra-violet, short-distance, cut-off.
It was shown in [27, 34] that the introduction of a higher-order gradient correction in the system of Eqs. (1), namely
odd viscosity, provides a natural regulator for continuous systems with shallow water-like dynamics. We will adopt
this regularization procedure here but we note that other regularization schemes are possible and we will discuss them
in a future publication. Odd viscosity can be introduced by modifying the momentum dynamics given by the second
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equation in (1) to

Dtu
µ = νoε

µν∇2uν − g∇µh+
1

µ0ρ
Bν∇νB

µ , (D1)

where ν0 is the (constant) odd viscosity coefficient appearing in front of a term that is second order in gradients and ϵµν

is the two-dimensional Levi-Civita tensor. Taking into account this modification, we can extract the Hamiltonian by
performing perturbations around an equilibrium state with constant or toroidal magnetic fields to obtain an equation
of the form (22) but with Hamiltonian given by

H =


0 kx ky 0 0
kx 0 −i(m− ϵk2) kxmγ2 0
ky i(m− ϵk2) 0 0 kxmγ2

0 kxm 0 0 0
0 0 kxm 0 0

 , (D2)

where m = ±1 depending on whether one is in the upper or lower hemisphere and where we have defined ϵ ≡ 2νoΩ0

gh0
.

We note that the Hamiltonian (D2) reduces to that of (22b) when ν0 = 0. The dispersion relations (eigenvalues) that
this leads to by means of (22) are depicted in blue in Fig. 4. We now wish to compute the Berry curvature associated
to the eigenvalues, in particular to the upper ”bands”, that is the magneto-inertial-gravity waves. Typically this can
be done by extracting the eigenvectors of the Hamiltonian. However, because we are dealing with a 5 x 5 matrix this
is analytically difficult. Instead the Berry curvature F±

xy with the ± signs indicating the upper (+) magneto-inertial-
gravity band and the lower (-) magneto-Rossby band, can be extracted directly by looking at the Hamiltonian and
evaluating

F±
xy =

1

2
Res

(
tr[G∂kx

HG2∂ky
H]− tr[G∂ky

HG2∂kx
H],W = ω±

)
, (D3)

with G = 1/(W −H) [55] and where ω± denotes the solution for the dispersion relation for the upper and lower bands,
respectively. In turn, the difference between Berry curvatures in two hemispheres is given by

∆Fxy = F±
xy

∣∣
m=1

− F±
xy

∣∣
m=−1

. (D4)

∆Fxy is computed numerically and given in Fig. 7 as a function of kx and ky. Using the Hamiltonian (D2) in (D3),

Figure 7: Numerical result for the Berry curvature difference ∆Fxy as a function of kx and ky. We took ϵ = 0.2.

focusing on the upper (+) band, and numerically integrating (D4) over kx and ky leads to the result for the Chern
number as presented in (23). We note that for the particular case of the Hamiltonian (D2) it is possible to verify that
the Berry curvature Fxy vanishes for large kx and ky implying that it was not necessary to introduce a regulator in
this case. However, the regulator is needed when solving for the equatorial spectrum in the f-plane approximation as
will be done below.
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2. Equatorial spectrum in the f-plane approximation

Here we show how to compute the f-plane spectrum of Fig. 4 by gluing together solutions on the upper and lower
hemispheres [34]. These solutions are necessariyl non-uniform along the y-direction, and hence we should consider an
ansatz of the form ∼ exp(iωt − ikxx) for the plane wave perturbations. Including the presence of the odd-viscosity
the equations of motion (1) lead to

−ω kx i∂y 0 0
kx −ω −i(m+ ϵ(∂2

y − k2x)) kxγ
2 0

i∂y i(m+ ϵ(∂2
y − k2x)) −ω 0 kxγ

2

0 kx 0 −ω 0
0 0 kx 0 −ω




δĥ
δux

δuy

δBx

δBy

 = 0 , (D5)

with m changing sign accross the equator. We proceed by solving Eq. (D5) for δBx, δBy and δĥ in order to find the
pair of equations

i

(
−ϵ(∂2

y − k2x) +
kx∂y
ω

−m

)
δuy =

ω2 −
(
γ2 + 1

)
k2x

ω
δux , (D6a)

i

(
kx∂y
ω

+ ϵ(∂2
y − k2x) +m

)
δux =

ω2 − γ2k2x + ∂2
y

ω
δuy . (D6b)

There are different types of solutions that can be extracted from here.
a. magneto-Kelvin wave. The first type of solutions is the magneto-Kelvin wave satisfying ω2 =

(
1 + γ2

)
k2x.

This leads to δuy = 0 and δux ∼ eqy for some q where q is given by a solution to the equation

kxq

ω
+ ϵ(q2 − k2x) +m = 0 . (D7)

Explicitly solving the equation above leads to two possibilities

q(1,2) = − k

ω
±

√
4ϵ (k2ϵ−m) + k2

ω2

2ϵ
. (D8)

We first consider the case in which ω = +
√
1 + γ2kx. It holds that for |kx| <

√
ϵ−1, we have the following behaviour

for q(1,2), namely

q(1) < 0 , q(2) < 0 , y > 0 . (D9a)

q(1) > 0 , q(2) < 0 , y < 0 . (D9b)

We note that there are two bounded (physical) solutions in the upper hemisphere y > 0 and one bounded solution
in the lower hemisphere. Thus, in principle it should be possible to glue one solution from each hemisphere together.
Specifically, identifying the upper hemisphere solutions with ↑ and lower hemisphere solutions with ↓, we have for
|kx| <

√
ϵ−1 that

u↑ = A(1) exp(q
(1)
↑ y) +A(2) exp(q

(2)
↑ y) , (D10a)

u↓ = B(1) exp(q
(1)
↓ y) , (D10b)

where A(1) and B(1) are constant arbitrary coefficients. Imposing the gluing conditions [34] in order to have a smooth
solution across the equator we find

δux
↑
∣∣
y=0

= δux
↓
∣∣
y=0

, ∂yδu
x
↑
∣∣
y=0

= ∂yδu
x
↓
∣∣
y=0

, (D11)

leads to

u↑ = A(1)

(
exp(q

(1)
↑ y) +

q
(1)
↓ − q

(1)
↑

q
(2)
↑ − q

(1)
↓

exp(q
(2)
↑ y)

)
, (D12a)

u↓ = A(1)

q
(1)
↑ − q

(2)
↑

q
(1)
↓ − q

(2)
↑

exp(q
(1)
↓ y) . (D12b)

These conditions determine the magneto-Kelvin wave ω =
√

1 + γ2k as a valid solution for |kx| <
√
ϵ−1 corresponding

to the orange line in Fig. 4.



15

b. Unbounded solution. For ω = −
√
1 + γ2kx, we have for |kx| <

√
ϵ−1 that the pair of solutions in (D8) behave

as

q(1) > 0 , q(2) > 0 , y > 0 . (D13a)

q(1) < 0 , q(2) > 0 , y < 0 . (D13b)

We see that there is no bounded solution in the upper hemisphere so this solution should be discarded as unphysical.
This corresponds to the dashed line in Fig. 4.

c. magneto-Yanai wave. Now we consider ω2 ̸= (1 + γ2)k2 and solve for δux to find[
γ2k2x

(
(1 + γ2)k2x − ∂2

y

)
− ω2

(
k2x
(
2γ2 + 1

)
+
(
ϵ
(
∂2
y − k2x

)
+m

)2 − ∂2
y

)
+ ω4

]
δuy = 0 . (D14)

Taking the ansatz δuy ∼ exp(sy), we can solve the above equation in order to find the four solutions

s
(1,2)
± = ±

√
S(1,2) , (D15a)

where S(1,2) is given by

S(1,2) =
ω2 − γ2k2 + 2ω2ϵ

(
k2ϵ−m

)
±
√

(ω2 − γ2k2) (ω2 (−4mϵ+ 4ω2ϵ2 + 1)− γ2k2 (4ω2ϵ2 + 1))

2ω2ϵ2
. (D15b)

This solution implies that a relation between δuy and δux, namely

δux = λδuy , (D16a)

where λ is given by

λ = −
i
(
k2xωϵ+ kxs− ω

(
m+ s2ϵ

))
k2x (γ

2 + 1)− ω2
. (D16b)

There are s− solutions in Eq. (D15) that are stable for y > 0 and are identified with the upper hemisphere using ↑,
and the s+ solutions there are solutions stable for y < 0 and will be identified with the lower hemisphere ↓. This
means that there are two bounded solutions on each side of the equator. To glue the solutions at the equator, and
obtain smooth solutions we impose the gluing conditions [34]

δux
↑
∣∣
y=0

= δux
↓
∣∣
y=0

, δuy
↑
∣∣
y=0

= δuy
↓
∣∣
y=0

, ∂yδu
x
↑
∣∣
y=0

= ∂yδu
x
↓
∣∣
y=0

, ∂yδu
y
↑
∣∣
y=0

= ∂yδu
y
↓
∣∣
y=0

, (D17)

which amounts to the equations to solving the master equation

det


1 1 −1 −1

λ
(1)
↑ λ

(2)
↑ −λ

(1)
↓ −λ

(2)
↓

s
(1)
↑ s

(2)
↑ −s

(1)
↓ −s

(2)
↓

s
(1)
↑ λ

(1)
↑ s

(2)
↑ λ

(2)
↑ −s

(1)
↓ λ

(1)
↓ −s

(2)
↓ λ

(2)
↓

 = 0 . (D18)

This equation is hard to solve analytically but we can numerically compute the left-hand side of Eq. (D18) for different
values of ω and kx and look for points where it goes below a certain numerically small threshold. Solving it yields
the green lines in Fig. 4, which are the magneto-Yanai waves. Note that the Alfvén dispersion relation ωA = ±γkx
solves the master equation (D18) but not does solve the gluing conditions (D17) and therefore it is spurious and we
discard it.

3. Topological insulators

To further establish the bulk-boundary correspondence and the topological properties of the MHD shallow water
wave Hamiltonian (22b), it is also helpful to study Eq. (D5) for an infinite strip geometry as in [34]. In this case,
we do not consider an equator, i.e. we take m = 1 everywhere, and instead introduce hard walls at the strip edges
along the width of the strip. The hard walls are implemented by imposing no-slip boundary conditions. Using the
numerical methods of Dedalus [56] for solving spectral problems, we obtain Fig. 8. Here, we compare the ordinary
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(a) γ = 0 (b) γ = 0.156

Figure 8: Spectrum for (a) shallow water problem with edges with no-slip boundary conditions and (b) for the MHD
shallow water problem. We took ϵ = 0.2 and strip width L = 32. The coloring gives the localization of the mode
along the strip width. In particular dark blue colour indicates that the modes are localised on the left edge while
yellow indicates that the modes are localised on the right edge. Green colour indicates that the modes are bulk

modes, not localised on any edge.

shallow water problem, for which this spectrum was obtained in Ref. [34] and is depicted on the left hand side of
Fig. 8, with the magnetohydrodynamic case depicted on the right hand side of Fig. 8. We see that with or without
the magnetic field, there are two solutions localized at each edge. One is the Kelvin wave, which is expected since the
edge problem is similar to a coastal problem where a coastal Kelvin mode appears [57]. The second is the Yanai wave,
which appears at the edge due to odd viscosity [34]. This further hilights the robust nature of the magneto-Kelvin
and magneto-Yanai waves.


	Topological plasma oscillations in the solar tachocline
	Abstract
	Contents
	Introduction
	Magnetic shallow water equations
	Equatorial spectrum with toroidal magnetic fields
	The magneto-Kelvin solution
	The quantum harmonic oscillator solutions

	Topology of plasma oscillations
	Discussion

	Bibliography
	References
	Derivation of the shallow water magnetohydrodynamics equations
	Comparison with earlier literature
	Equatorial spectrum with constant magnetic fields
	f-plane, Berry curvature and topological insulators
	f-plane approximation and Berry curvature
	Equatorial spectrum in the f-plane approximation
	Topological insulators



